Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.27.586820

ABSTRACT

The highly mutated SARS-CoV-2 variant, BA.2.86, and its descendants are now the most frequently sequenced variants of SARS-CoV-2. We analyze antibody neutralization data from eight laboratories from the UK, USA, Denmark, and China, including two datasets assessing the effect of XBB.1.5 vaccines, to determine the effect of infection and vaccination history on neutralization of variants up to and including BA.2.86, and produce antibody landscapes to describe these neutralization profiles. We find evidence for lower levels of immune imprinting on pre-Omicron variants in sera collected from Denmark and China, which may be explained by lower levels of circulation of the ancestral variant in these countries, and the use of an inactivated virus vaccine in China.

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.25.493397

ABSTRACT

Over the course of the pandemic variants have arisen at a steady rate. The most recent variants to emerge, BA.4 and BA.5, form part of the Omicron lineage and were first found in Southern Africa where they are driving the current wave of infection. In this report, we perform an in-depth characterisation of the antigenicity of the BA.4/BA.5 Spike protein by comparing sera collected post-vaccination, post-BA.1 or BA.2 infection, or post breakthrough infection of vaccinated individuals with the Omicron variant. In addition, we assess sensitivity to neutralisation by commonly used therapeutic monoclonal antibodies. We find sera collected post-vaccination have a similar ability to neutralise BA.1, BA.2 and BA.4/BA.5. In contrast, in the absence of vaccination, prior infection with BA.2 or, in particular, BA.1 results in an antibody response that neutralises BA.4/BA.5 poorly. Breakthrough infection with Omicron in vaccinees leads to a broad neutralising response against the new variants. The sensitivity of BA.4/BA.5 to neutralisation by therapeutic monoclonal antibodies was similar to that of BA.2. These data suggest BA.4/BA.5 are antigenically distinct from BA.1 and, to a lesser extent, BA.2. The enhanced breadth of neutralisation observed following breakthrough infection with Omicron suggests that vaccination with heterologous or multivalent antigens may represent viable strategies for the development of cross-neutralising antibody responses.


Subject(s)
Breakthrough Pain
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.17.22271126

ABSTRACT

In contrast to the increasing levels of high avidity S antibody measured by the Roche assay in the first 6 months following natural infection, marked waning is seen post 2 or 3 doses of vaccine. Although the kinetics differ between those with vaccine-induced immunity compared to those infected prior to vaccination (hybrid immunity), waning rates appear to be similar following 2 or 3 doses of vaccine. These data should allow countries to optimise the timing of future doses of vaccine.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.23.21268293

ABSTRACT

SARS-CoV-2 variants threaten the effectiveness of tools we have developed to mitigate against serious COVID-19. This is especially true in clinically vulnerable sections of society including the elderly. Using sera from BNT162b2 (Pfizer–BioNTech) vaccinated individuals aged between 70 and 89 (vaccinated with two doses 3-weeks apart) we examined the neutralising antibody (nAb) response to wildtype SARS-CoV-2. Between 3 and 20-weeks post 2 nd dose, nAb titres dropped 4.9-fold to a median titre of 21.3 (ND80) with 21.6% of individuals having no detectable nAbs at the later time point. Experiments examining the neutralisation of twenty-one different SARS-CoV-2 variant spike proteins confirmed a significant potential for antigenic escape, especially for the Omicron (BA.1), Beta (B.1.351), Delta (B.1.617.2), Theta (P.3), C.1.2 and B.1.638 variants. Interestingly, however, the recently-emerged sub-lineage AY.4.2 was more efficiently neutralised than parental Delta pseudotypes. Combining pseudotype neutralisation with specific receptor binding domain (RBD) ELISAs we confirmed that changes to position 484 in the spike RBD were predominantly responsible for SARS-CoV-2 nAb escape, although the effect of spike mutations is both combinatorial and additive. Lastly, using sera from the same individuals boosted with a 3 rd dose of BNT162b2 we showed that high overall levels of neutralising antibody titre can provide significant levels of cross-protection against Omicron. These data provide evidence that SARS-CoV-2 neutralising antibodies wane over time and that antigenically variable SARS-CoV-2 variants are circulating, highlighting the importance of ongoing surveillance and booster programmes. Furthermore, they provide important data to inform risk assessment of new SARS-CoV-2 variants, such as Omicron, as they emerge.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.14.21267615

ABSTRACT

Abstract Background A rapid increase in cases due to the SARS-CoV-2 Omicron (B.1.1.529) variant in highly vaccinated populations has raised concerns about the effectiveness of current vaccines. Methods We used a test-negative case-control design to estimate vaccine effectiveness (VE) against symptomatic disease caused by the Omicron and Delta variants in England. VE was calculated after primary immunisation with two BNT162b2 or ChAdOx1 doses, and at 2+ weeks following a BNT162b2 booster. Results Between 27 November and 06 December 2021, 581 and 56,439 eligible Omicron and Delta cases respectively were identified. There were 130,867 eligible test-negative controls. There was no effect against Omicron from 15 weeks after two ChAdOx1 doses, while VE after two BNT162b2 doses was 88.0% (95%CI: 65.9 to 95.8%) 2-9 weeks after dose 2, dropping to between 34 and 37% from 15 weeks post dose 2.From two weeks after a BNT162b2 booster, VE increased to 71.4% (95%CI: 41.8 to 86.0%) for ChAdOx1 primary course recipients and 75.5% (95%CI: 56.1 to 86.3%) for BNT162b2 primary course recipients. For cases with Delta, VE was 41.8% (95%CI: 39.4-44.1%) at 25+ weeks after two ChAdOx1 doses, increasing to 93.8% (95%CI: 93.2-94.3%) after a BNT162b2 booster. With a BNT162b2 primary course, VE was 63.5% (95%CI: 61.4 to 65.5%) 25+ weeks after dose 2, increasing to 92.6% (95%CI: 92.0-93.1%) two weeks after the booster. Conclusions Primary immunisation with two BNT162b2 or ChAdOx1 doses provided no or limited protection against symptomatic disease with the Omicron variant. Boosting with BNT162b2 following either primary course significantly increased protection.


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.10.21267583

ABSTRACT

Background The role of educational settings on SARS-CoV-2 infection and transmission remains controversial. We investigated SARS-CoV-2 infection, seroprevalence and seroconversions rates in secondary schools during the 2020/21 academic year, which included the emergence of the more transmissible Alpha and Delta variants, in England. Methods The UK Health Security Agency (UKHSA) initiated prospective surveillance in 18 urban English secondary schools. Participants had nasal swabs for SARS-CoV-2 RT-PCR and blood sampling for SARS-CoV-2 Nucleoprotein and Spike protein antibodies at the start (Round 1: September-October 2020) and end (Round 2: December 2021) of the autumn term, when schools reopened after national lockdown was imposed in January 2021 (Round 3: March-April) and end of the academic year (Round 4: May-July). Findings We enrolled 2,314 participants (1277 students, 1037 staff). In-school testing identified 31 PCR-positive participants (20 students, 11 staff). Another 247 confirmed cases (112 students, 135 staff) were identified after linkage with national surveillance data, giving an overall positivity rate of 12.0% (278/2313; staff [14.1%, 146/1037] vs students [10.3%, 132/1276; p=0.006). Nucleoprotein-antibody seroprevalence increased for students and staff between Rounds 1-3 but changed little in Round 4, when the Delta variant was the dominant circulating strain. Overall, Nucleoprotein-antibody seroconversion was 18.4% (137/744) in staff and 18.8% (146/778) in students, while Spike-antibody seroconversion was higher in staff (72.8% (525/721) than students (21.3%, 163/764) because of vaccination. Interpretation SARS-CoV-2 infection and transmission in secondary schools remained low when community infection rates were low because of national lockdown, even after the emergence of the Delta variant


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.22.21266692

ABSTRACT

Importance: There are limited data on immune responses after COVID-19 vaccine boosters in individuals receiving primary immunisation with BNT162b2 (Pfizer-BioNTech) or AZD1222 (AstraZeneca) Objective: To assess SARS-CoV-2 antibody responses before and after booster vaccination with BNT162b2 in adults receiving two BNT162b2 or AZD1222 vaccine doses at least 6 months previously, as part of the United Kingdom national immunisation schedule Design: Prospective, cohort study Setting: London, England Participants: 750 immunocompetent adults aged [≥]50 years Interventions: A single dose of BNT162b2 administered at least six months after primary immunisation with two doses of BNT162b2 given <30 days apart (BNT162b2-control) or [≥]30 days apart (BNT162b2-extended) compared to AZD1222 given [≥]30 days apart (AZD1222-extended) Main Outcome and Measures: SARS-CoV-2 spike protein antibody geometric mean titres (GMTs) before and 2-4 weeks after booster Results: Of 750 participants, 626 provided serum samples for up to 38 weeks after their second vaccine dose. Antibody GMTs peaked at 2-4 weeks after the second dose, before declining by 68% at 36-38 weeks after dose 2 for BNT162b2-control participants, 85% at 24-29 weeks for BNT162b2-extended participants and 78% at 24-29 weeks for AZD1222-extended participants. Antibody GMTs was highest in BNT162b2-extended participants (942 [95%CI, 797-1113]) than AZD1222-extended (183 [124-268]) participants at 24-29 weeks or BNT162b2-control participants at 36-38 weeks (208; 95%CI, 150-289). At 2-4 weeks after booster, GMTs were significantly higher than after primary vaccination in all three groups: 18,104 (95%CI, 13,911-23,560; n=47) in BNT162b2-control (76.3-fold), 13,980 (11,902-16,421; n=118) in BNT162b2-extended (15.9-fold) and 10,799 (8,510-13,704; n=43) in AZD1222-extended (57.2-fold) participants. BNT162b2-control participants (median:262 days) had a longer interval between primary and booster doses than BNT162b2-extended or AZD1222-extended (both median:186 days) participants. Conclusions and Relevance: We observed rapid serological responses to boosting with BNT162b2, irrespective of vaccine type or schedule used for primary immunisation, with higher post-booster responses with longer interval between primary immunisation and boosting. Boosters will not only provide additional protection for those at highest risk of severe COVID-19 but also prevent infection and, therefore, interrupt transmission, thereby reducing infections rates in the population. Ongoing surveillance will be important for monitoring the duration of protection after the booster.


Subject(s)
COVID-19
8.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1108654.v1

ABSTRACT

We present a comprehensive analysis of antibody and cellular responses in children aged 12-16 years who received COVID-19 vaccination with ChAdOx1 (n=6) or mRNA vaccine (mRNA-1273 or BNT162b2, n=9) using a 12-week extended-interval schedule. mRNA vaccination of seropositive children induces high antibody levels, with one dose, but a second dose is required in infection-naïve children. Following a second ChAdOx1 dose, antibody titres were higher than natural infection, but lower than mRNA vaccination. Vaccination induced live virus neutralising antibodies against Alpha, Beta and Delta variants, however, a second dose is required in infection-naïve children. We found higher T-cell responses following mRNA vaccination than ChAdOx1. Phenotyping of responses showed predominantly early effector-memory CD4 T cell populations, with a type-1 cytotoxic cytokine signature, with IL-10. These data demonstrate mRNA vaccination induces a co-ordinated superior antibody and robust cellular responses in children. Seronegative children require a prime-boost regime for optimal protection.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.26.21265497

ABSTRACT

In March 2020, the Rare and Imported Pathogens Laboratory at Public Health England, Porton Down, was tasked by the Department of Health and Social Care with setting up a national surveillance laboratory facility to study SARS-CoV-2 antibody responses and population-level sero-surveillance in response to the growing SARS-CoV-2 outbreak. In the following 12 months, the laboratory tested more than 160,000 samples, facilitating a wide range of research and informing PHE, DHSC and UK government policy. Here we describe the implementation and use of the Euroimmun anti-SARS-CoV-2 IgG assay and provide an extended evaluation of its performance. We present a markedly improved sensitivity of 91.39% ([≥]14 days 92.74%, [≥]21 days 93.59%) compared to our small-scale early study, and a specificity of 98.56%. In addition, we detail extended characteristics of the Euroimmun assay: intra- and inter-assay precision, correlation to neutralisation and assay linearity.


Subject(s)
COVID-19
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.25.21264964

ABSTRACT

Serological surveillance studies sometimes use presence of anti-nucleocapsid antibody as a marker of natural SARS-CoV-2 infection. We explore seroconversion rates and antibody titres following Alpha and Delta variant infections, and vaccine breakthrough infections. We find lower seroconversion rates particularly following Alpha-variant vaccine breakthrough infections. We re-evaluate assay performance with a mix of past waned infections and recent breakthrough infections, that is relevant to current serological surveillance.


Subject(s)
COVID-19 , Breakthrough Pain
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.22.21264701

ABSTRACT

Background This study measured the long-term health-related quality of life of non-hospitalised COVID-19 cases with PCR-confirmed SARS-CoV-2(+) infection using the recommended instrument in England (the EQ-5D). Methods Prospective cohort study of SARS-CoV-2(+) cases aged 12-85 years and followed up for six months from 01 December 2020, with cross-sectional comparison to SARS-CoV-2(-) controls. Main outcomes were loss of quality-adjusted life days (QALDs); physical symptoms; and COVID-19-related private expenditures. We analysed results using multivariable regressions with post-hoc weighting by age and sex, and conditional logistic regressions for the association of each symptom and EQ-5D limitation on cases and controls. Results Of 548 cases (mean age 41.1 years; 61.5% female), 16.8% reported physical symptoms at month 6 (most frequently extreme tiredness, headache, loss of taste and/or smell, and shortness of breath). Cases reported more limitations with doing usual activities than controls. Almost half of cases spent a mean of £18.1 on non-prescription drugs (median: £10.0), and 52.7% missed work or school for a mean of 12 days (median: 10). On average, all cases lost 15.9 (95%-CI: 12.1, 19.7) QALDs, while those reporting symptoms at month 6 lost 34.1 (29.0, 39.2) QALDs. Losses also increased with older age. Cumulatively, the health loss from morbidity contributes at least 21% of the total COVID-19-related disease burden in England. Conclusions One in 6 cases report ongoing symptoms at 6 months, and 10% report prolonged loss of function compared to pre-COVID-19 baselines. A marked health burden was observed among older COVID-19 cases and those with persistent physical symptoms. summary Losses of health-related quality of life in non-hospitalised COVID-19 cases increase by age and for cases with symptoms after 6 months. At a population level, at least 21% of the total COVID-19-related disease burden in England is attributable to morbidity.


Subject(s)
COVID-19 , Dyspnea
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.26.21261140

ABSTRACT

IntroductionIn January 2021, the UK decided to prioritise the delivery of the first dose of BNT162b2 (Pfizer/BioNTech) and AZD1222 (AstraZeneca) vaccines by extending the interval until the second dose up to 12 weeks. MethodsSerological responses were compared after BNT162b2 and AZD1222 vaccination with varying intervals in uninfected and previously-infected adults aged 50-89 years. These findings are evaluated against real-world national vaccine effectiveness (VE) estimates against COVID-19 in England. ResultsWe recruited 750 participants aged 50-89 years, including 126 (16.8%) with evidence of previous infection; 421 received BNT162b2 and 329 and AZD1222. For both vaccines, over 95% had seroconverted 35-55 days after dose one, and 100% seroconverted 7+ days after dose 2. Following a 65-84 day interval between two doses, geometric mean titres (GMTs) at 14-34 days were 6-fold higher for BNT162b2 (6703; 95%CI, 5887-7633) than AZD1222 (1093; 806-1483), which in turn were higher than those receiving BNT162b2 19-29 days apart (694; 540 - 893). For both vaccines, VE was higher across all age-groups from 14 days after dose two compared to one dose, but the magnitude varied with interval between doses. Higher two-dose VE was observed with >6 week intervals between BNT162b2 doses compared to the authorised 3-week schedule, including [≥]80 year-olds. ConclusionOur findings support the UK approach of prioritising the first dose of COVID-19 vaccines, with evidence of higher protection following extended schedules. Given global vaccine constraints, these results are relevant to policymakers, especially with highly transmissible variants and rising incidence in many countries. FundingPublic Health England


Subject(s)
COVID-19
13.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-727799.v1

ABSTRACT

Background: Several SARS-CoV-2 vaccines have shown clinical efficacy against Covid-19 infection but there remains uncertainty about the immune responses elicited by different regimens. This is a particularly important question for older people who are at increased clinical risk following infection and in whom immune senescence may limit vaccine responses. The BNT162b2 mRNA and ChAdOx1 adenovirus vaccines were the first two vaccines deployed in the UK programme using an 8-12 week ‘extended interval’. Objectives: We undertook analysis of the spike-specific antibody and cellular immune response in 131 participants aged 80+ years after the second dose of ‘extended interval’ dual vaccination with either BNT162b2 mRNA (n=54) or ChAdOx1 (n=77) adenovirus vaccine. Blood samples were taken 2-3 weeks after second vaccine and were paired with samples taken at 5-weeks after first vaccine which have been reported previously. Antibody responses were measured using the Elecsys® electrochemiluminescence immunoassay assay and cellular responses were assessed by IFN-g ELISpot. Results: Antibody responses against spike protein became detectable in all donors following dual vaccination with either vaccine. 4 donors had evidence of previous natural infection which is known to boost vaccine responses. Within the 53 infection-naïve donors the median antibody titre was 4030 U/ml (IQR 1892-8530) following BNT162b2 dual vaccination and 1405 (IQR 469.5- 2543) in the 74 patients after the ChAdOx1 vaccine (p=<0.0001). Spike-specific T cell responses were observed in 30% and 49% of mRNA and ChAdOx1 recipients respectively and median responses were 1.4-times higher in ChAdOx1 vaccinees at 14 vs 20 spots/million respectively (p=0.022). Conclusion: Dual vaccination with BNT162b2 or ChAdOx1 induces strong humoral immunity in older people following an extended interval protocol. Antibody responses are 2.9-times higher following the mRNA regimen whilst cellular responses are 1.7-times higher with the adenovirus-based vaccine. Differential patterns of immunogenicity are therefore elicited from the two vaccine platforms. It will be of interest to assess the relative stability of immune responses after these homologous vaccine regimens in order to assess the potential need for vaccine boosting. Furthermore, these findings indicate that heterologous vaccine platforms may offer the opportunity to further optimize vaccine responses.


Subject(s)
COVID-19
14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.14.21260496

ABSTRACT

Background In England, the rapid spread of the SARS-Cov-2 Alpha (B.1.1.7) variant from November 2020 led to national lockdown, including school closures in January 2021. We assessed SARS-CoV-2 infection, seroprevalence and seroconversion in students and staff when secondary schools reopened in March 2021. Methods Public Health England initiated SARS-CoV-2 surveillance in 18 secondary schools across six regions in September 2020. Participants provided nasal swabs for RT-PCR and blood samples for SARS-CoV-2 antibodies at the beginning (September 2020) and end (December 2020) of the autumn term and at the start of the spring term (March 2021). Findings In March 2021, 1895 participants (1100 students, 795 staff) were tested; 5.6% (61/1094) students and 4.4% (35/792) staff had laboratory-confirmed SARS-CoV-2 infection between December 2020 and March 2021. Nucleoprotein antibody seroprevalence was 36.3% (370/1018) in students and 31.9% (245/769) in staff, while spike protein antibody prevalence was 39.5% (402/1018) and 59.8% (459/769), respectively, similar to regional community seroprevalence. Between December 2020 and March 2021 (median 15.9 weeks), 14.8% (97/656; 95% CI: 12.2-17.7) students and 10.0% (59/590; 95% CI: 7.7-12.7) staff seroconverted. Weekly seroconversion rates were similar from September to December 2020 (8.0/1000) and from December 2020 to March 2021 (7.9/1000; students: 9.3/1,000; staff: 6.3/1,000). Interpretation By March 2021, a third of secondary school students and staff had serological evidence of prior infection based on N-antibody seropositivity, and an additional third of staff had evidence of vaccine-induced immunity based on S-antibody seropositivity. Further studies are needed to assess the impact of the Delta variant. Research in Context Evidence Before this study The Alpha variant is 30-70% more transmissible than previously circulating SARS-CoV-2 strains in adults and children. One outbreak investigation in childcare settings estimated similar secondary attack rates with the Alpha variant in children and adults. There are limited data on the impact of the Alpha variant in educational settings. In England, cases in primary and secondary school aged children increased rapidly from late November 2020 and peaked at the end of December 2020, leading to national lockdown including school closures. Added Value of This Study Seroconversion rates in staff and students during December 2020 to March 2021, when the Alpha variant was the primary circulating strain in England, were similar to the period between September 2020 and December 2020 when schools were fully open for in-person teaching. By March 2021, a third of students overall and more than half the students in some regions were seropositive for SARS-CoV-2 antibodies. Among staff, too, around a third had evidence of prior infection on serological testing and a further third had vaccine-induced immunity. Implications of all the Available Evidence SARS-CoV-2 antibody seroprevalence was high among secondary school students in March 2021 and is likely to be higher following the emergence of an even more transmissible Delta variant in May 2021. Education staff are increasingly being protected by the national COVID-19 immunisation programme. These findings have important implications for countries that are considering vaccination of children to control the pandemic


Subject(s)
COVID-19
15.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3880967

ABSTRACT

Adults receiving heterologous prime-boost COVID-19 immunisation schedules with mRNA (Pfizer-BioNTech) or adenoviral-vector (ChAdOx1-S/nCOV-19) vaccines had higher reactogenicity rates and were more likely to seek medical attention after their second dose than homologous schedules. Reactogenicity rates were generally higher among ≤50 than >50 year-olds and in adults with prior symptomatic or confirmed COVID-19. Adults receiving heterologous schedules because of severe first-dose reactions had lower reactogenicity after the second dose following ChAdOx1-S/Pfizer-BioNTech (93.4%[90.5-98.1] vs. 48%[41.0-57.7]) but not Pfizer-BioNTech/ChAdOx1-S (91.7%[77.5-98.2] vs. 75.0%[57.8-87.9]).


Subject(s)
COVID-19
16.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.22.21257658

ABSTRACT

Background: The B.1.617.2 COVID-19 variant has contributed to the surge in cases in India and has now been detected across the globe, including a notable increase in cases in the UK. We estimate the effectiveness of the BNT162b2 and ChAdOx1 COVID-19 vaccines against this variant. Methods: A test negative case control design was used to estimate the effectiveness of vaccination against symptomatic disease with both variants over the period that B.1.617.2 began circulating with cases identified based on sequencing and S-gene target status. Data on all symptomatic sequenced cases of COVID-19 in England was used to estimate the proportion of cases with B.1.617.2 compared to the predominant strain (B.1.1.7) by vaccination status. Results: Effectiveness was notably lower after 1 dose of vaccine with B.1.617.2 cases 33.5% (95%CI: 20.6 to 44.3) compared to B.1.1.7 cases 51.1% (95%CI: 47.3 to 54.7) with similar results for both vaccines. With BNT162b2 2 dose effectiveness reduced from 93.4% (95%CI: 90.4 to 95.5) with B.1.1.7 to 87.9% (95%CI: 78.2 to 93.2) with B.1.617.2. With ChAdOx1 2 dose effectiveness reduced from 66.1% (95% CI: 54.0 to 75.0) with B.1.1.7 to 59.8% (95%CI: 28.9 to 77.3) with B.1.617.2. Sequenced cases detected after 1 or 2 doses of vaccination had a higher odds of infection with B.1.617.2 compared to unvaccinated cases (OR 1.40; 95%CI: 1.13-1.75). Conclusions: After 2 doses of either vaccine there were only modest differences in vaccine effectiveness with the B.1.617.2 variant. Absolute differences in vaccine effectiveness were more marked with dose 1. This would support maximising vaccine uptake with two doses among vulnerable groups.


Subject(s)
COVID-19
17.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.15.21257017

ABSTRACT

Abstract Objectives: To assess the relative immunogenicity of standard or extended interval BNT162b2 vaccination. Design: Population based cohort study comparing immune responses 2 weeks after the second vaccine, with appropriate time-matched samples in participants who received standard or extended interval double vaccination. Setting: Primary care networks, Birmingham, UK. December 2020 to April 2021. Participants: 175 people aged over 80 years of age. All donors received the BNT162b2 Pfizer/BioNTech vaccination and were vaccinated with either a standard 3 week interval between doses or an extended interval schedule. Main outcome measures: Peak quantitative spike-specific antibody and cellular immune responses. Results: In donors without evidence of previous infection the peak antibody response was 3.5-fold higher in donors who had undergone delayed interval vaccination. Cellular immune responses were 3.6-fold lower. Conclusion: Peak antibody responses after the second BNT162b2 vaccine are markedly enhanced in older people when this is delayed to 12 weeks although cellular responses are lower. Extended interval vaccination may therefore offer the potential to enhance and extend humoral immunity. Further follow up is now required to assess long term immunity and clinical protection.

18.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.12.21255275

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but the biological basis for this is unclear. We studied the profile of antibody and cellular immunity in children aged 3-11 years in comparison with adults. Antibody profiles in children were strong with high titres against spike protein and receptor binding domain (RBD). SARS-CoV-2 seroconversion in children strongly boosted antibody responses against seasonal beta-coronaviruses, partly through cross-recognition of the S2 domain, indicating a broad humoral response that was not seen in adults. T cell responses against spike were also >2-fold higher in children compared to adults and displayed a strong Th1 cytokine profile. SARS-CoV-2 spike-reactive cellular responses were present in more than half the seronegative children, indicating pre-existing cross-reactive responses or sensitization against SARS-CoV-2. Importantly, all children retained high antibody titres and cellular responses for more than 6 months after infection whilst relative antibody waning was seen in adults. Children thus distinctly generate robust, cross-reactive and sustained immune responses after SARS-CoV-2 infection with focussed specificity against spike protein. These observations demonstrate several novel features of SARS-CoV-2-specific immune responses in children and may provide insights into relative clinical protection in this group. Such information on the profile of natural infection will help to guide the introduction of vaccination regimens into the paediatric population.


Subject(s)
COVID-19
19.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3816840

ABSTRACT

Background: Age is the major risk factor for mortality after SARS-CoV-2 infection and older people have received priority consideration for COVID-19 vaccination. However vaccine responses are often suboptimal in this age group and few people over the age of 80 years were included in vaccine registration trials.Methods: We determined the serological and cellular response to spike protein in 100 people aged 80-96 years at 2 weeks after second vaccination with the Pfizer BNT162b2 mRNA vaccine.Findings: Antibody responses were seen in every donor with high titres in 98%. Spike-specific cellular immune responses were detectable in only 63% and correlated with humoral response. Previous SARS-CoV-2 infection substantially increased antibody responses after one vaccine and antibody and cellular responses remained 28-fold and 3-fold higher respectively after dual vaccination. Post-vaccine sera mediated strong neutralisation of live Victoria (Wuhan-like prototype) infection and although neutralisation titres were reduced 14-fold against the P.1 variant first discovered in Brazil they remained largely effective.Interpretation: These data demonstrate that the mRNA vaccine platform delivers strong humoral immunity in people up to 96 years of age and retains broad efficacy against the P.1 Variant of Concern.Funding: This work was supported by the UK Coronavirus Immunology Consortium (UK-CIC) funded by DHSC/UKRI and the National Core Studies Immunity programme. Declaration of Interest: None to declare. Ethical Approval: The work was performed under the CIA UPH IRAS approval (REC 20\NW\0240) and conducted according to the Declaration of Helsinki and good clinical practice.


Subject(s)
COVID-19
20.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3803380

ABSTRACT

The COVID-19 vaccination programme commenced in the UK on 8th December 2020 primarily based on age; by 24 February 2021 approximately 93% of the English population aged 70-79 years had received at least 1 dose of either the Pfizer BioNTech or AstraZeneca vaccines. Using a nucleoprotein assay that detects antibodies following natural infection only and a spike assay that detects both infection and vaccine-induced responses, we aim to describe the impact of vaccination on SARS-CoV-2 antibody prevalence in English blood donors.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL